EXPLORATIONS IN ARCHITECTURE
TEACHING DESIGN RESEARCH

A METHODOLOGY
B NETWORKS
C DIDACTICS
D TECHNOLOGY

ESSAYS

STOP MAKING SENSE Angelus Eisinger 14
A DISCOURSE ON METHOD Sanford Kwinter 34
AN ANT’S VIEW OF ARCHITECTURAL Bruno Latour, Albena Yaneva 80
UNDERSTANDING BY DESIGN Daniel Bisig, Rolf Pfeifer 124
ARCHITECTURE AS MEMBRANE Georges Teyssot 166

HISTORICAL CASE STUDIES

REM Koolhaas Deane Simpson 12
INSTITUTE FOR ARCHITECTURE AND URBAN STUDIES Kim Förster 26
VENTURI, SCOTT BROWN, AND IZENOUR Martino Stierli 48
LUCIUS BURCHARDT Martin Josephy 78
CONSTANTINOS DOXIADIS Jeannie Kim 90
TEAM 10 Tom Avermaete 114
CHRISTOPHER ALEXANDER Andri Gerber 122
ALDO ROSSI Filip Geerts 134
HOCHSCHULLE FÜR GESTALTUNG ULM Tilo Richter 158
BUCKMINSTER FULLER Mark Wasiuta 176
EAMES OFFICE John Harwood 200
HENRY VAN DE VELDE Ole W. Fischer 208

STUDIO CASE STUDIES

LAPA Laboratoire de la production d’architecture [EPFL] 54
ALICE Atelier de la conception de l’espace [EPFL] 141
DFAB Gramazio & Kohler, Architecture and Digital Fabrication [ETHZ] 182

BIRKHÄUSER

TABLE OF CONTENTS

4 COLophon
6 ACKNOWLEDGMENTS
8 INTRODUCTION Reto Geiser
12 PERFORMATIVE MODERNITIES: REM KOOLHAAS’S DELIRIOUS NEW YORK AS INDUCTIVE RESEARCH Deane Simpson
14 STOP MAKING SENSE Angelus Eisinger
26 ALTERNATIVE EDUCATIONAL PROGRAMS IN ARCHITECTURE: THE INSTITUTE FOR ARCHITECTURE AND URBAN STUDIES Kim Förster
29 Research Environments*
34 A DISCOURSE ON METHOD (FOR THE PROPER CONDUCT OF REASON AND THE SEARCH FOR EFFICACY IN DESIGN) Sanford Kwinter
50 FROM CITY TO DETAIL: THE SPHERE OF THE ARCHITECT Harry Gugger, Carolin Stepenhorst
54 LAPA Laboratoire de la production d’architecture [EPFL]
73 Research Environments*
78 CRITICAL PRACTICE BETWEEN SCIENCE AND ART: LUCIUS BURCHARDT AND THE EMERGENCE OF PLANNING THEORY Martin Josephy
80 “GIVE ME A GUN AND I WILL MAKE ALL BUILDINGS MOVE”: AN ANT’S VIEW OF ARCHITECTURE Bruno Latour, Albena Yaneva
82 THE ORACLE OF ATHENS: CONSTANTINOS DOXIADIS AND THE STUDY OF HUMAN SETTLEMENTS Jeannie Kim
92 URBAN TRANSFORMATION IN DEVELOPING TERRITORIES Marc Angélil
94 ADDOS THROUGH THE LOOKING-GLASS Marc Angélil, Gary Sirens
98 MAS UD Master of Advanced Studies in Urban Design [ETHZ]
114 A WEB OF RESEARCH ON SOCIO-PLASTICS: TEAM 50 AND THE CRITICAL FRAMING OF EVERYDAY URBAN ENVIRONMENTS Tom Avermaete

D TECHNOLOGY

117 Research Environments*
122 NOTES ON THE ANALYSIS OF FORM: CHRISTOPHER ALEXANDER AND THE LANGUAGE OF PATTERNS Andri Gerber
124 UNDERSTANDING BY DESIGN: THE SYNTHETIC APPROACH TO INTELLIGENCE Daniel Bisig, Rolf Pfeifer
134 THE CITY AS ARCHITECTURE: ALDO ROSSI’S DIDACTIC LEGACY Filip Geerts
136 EXPLORING UNCOMMON TERRITORIES: A SYNTHETIC APPROACH TO TEACHING ARCHITECTURE Dieter Dietz
141 ALICE Atelier de la conception de l’espace [EPFL]
161 Research Environments*
166 ARCHITECTURE AS MEMBRANE Georges Teyssot
176 WORLD GAME NEW YORK 1969: BUCKMINSTER FULLER’S GLOBAL SWITCHBOARD Mark Wasiuta
178 DIGITAL MATERIALITY IN ARCHITECTURE: BRIDING THE REALMS OF THE VIRTUAL AND THE PHYSICAL Fabio Gramazio, Matthias Kohler
182 DFAB Gramazio & Kohler, Architecture and Digital Fabrication [ETHZ]
200 R AND D: THE EAMES OFFICE AT WORK John Harwood
202 CREDITS
204 INDEX OF CONTRIBUTORS
206 IMAGE CREDITS
207 PATRONS AND SPONSORS
208 EXPERIMENTAL WORKSHOP OF MODERNITY: REFORMIST DESIGN EDUCATION FROM VAN DE VELDE TO BAUHAUS Ole W. Fischer
210 STRUCTURAL OSCILLATIONS, INSTALLATION FOR THE 51ST VENICE ARCHITECTURAL BIENNALE, SWISS PAVILION 2008

* Research Environments at the Swiss Federal Institutes of Technology in Lausanne and Zurich, photos by Moris Mezulis.
ALICE
Atelier de la conception de l'espace
École Polytechnique Fédérale de Lausanne (EPFL)

EXPLORING UNCOMMON TERRITORIES:
A SYNTHETIC APPROACH TO TEACHING ARCHITECTURE

Dieter Dietz

"My NAME is Alice, but—"
"It's a stupid enough name!" Humpty Dumpty interrupted impatiently.
"What does it mean?"
"MUST a name mean something?" Alice asked doubtfully.
"Of course it must," Humpty Dumpty said with a short laugh.
"My nose means the shape I am—and a good handsome shape it is, too.
With a name like yours, you might be any shape, almost."
—Lewis Carroll, Through the Looking Glass

RÉALITÉS PARALLÈLES
In its approach to teaching, ALICE explores uncommon territories. The choices of topics and sites purposefully combine the familiar with very particular geographical, economical or morphological circumstances. We emphasize working concurrently with multiple tools, such as physical models, 3-D software, images, 2-D programs, computer aided manufacturing, etc. ALICE modifies its curriculum each year to encompass new material and domains.

The idea of a parallel approach to the conception and production of architectural design is a central aspect of the didactic structure. All projects are literally developed both in the digital as well as in the physical world. With "Réalités parallèles" (parallel realities) we propose a method of intense engagement with the idea of making, not only in a physical sense—as in the crafting of models, drawings, or hand-drawn sketches—but also in a virtual sense, as in the production of digital models, visuals, databases, images, etc. The design process is constantly challenged by catalyst reactions in the respective fields of production.

In recent times, the size of our geophysical earth, the "physically far," has constantly been challenged by the "technologically near." Our planet has shrunk and continues to shrink into a comprehended object. Our experience of journey, both physical and mental, is being unintentionally eradicated by the loss of intervals and temporalities. On the other hand, this presents us with a fresh vantage point that we cannot occupy directly: the agravitational horizontal window relentlessly scanning the earth's surface: humankind's third eye.

How can architecture not only engage with, but possibly create resistance to this new frictionless world, using the available new technologies? Can architecture still perform as a conductor of flows, while working against the grain of the ever smoother, the ever faster—while remembering that the earth pulls us?
GRAVITY AT WORK
The first phase in the ALICE curriculum includes the fabrication of a "physical construct" based on explorations conducted through experiments. The physical construct is intended to "declare gravity at work."

1. Experiment with smoke and a cardboard grid in order to understand how the resistance of air affects the way a given structure falls.
 Maioica Cimenti, Lila Heid

2. Emphasis was given to the observation both of falling objects as well as the receiving ground. Here gravity is replaced through a vacuum forming device; the result suggests a gravitational force through its visual narrative.
 Nicolas De Courten, Christopher Tan

3. The gravitational impact on falling object and receiving ground was observed as spatial and formal conditions manifested in compressed moments of time.
 Andreas Gubler, Sandro Tonietti
This project investigates how, with an increasing upward force, an initial two-dimensional lattice redistributes itself into three-dimensional space with some local attachments.

Nicolas De Courten, Christopher Tan

A physical construct declaring gravity

At work

What appears to be a simple triangulated object is in fact a structure consisting of bands, with a hierarchy between the different joints. The result is not a fully rigid structure but rather a partially flexible construct that resists gravity by means of its geometry.
This project was generated through the tracking of a sheet of paper falling in space. The movements were recorded by 3 cameras and then reconstructed in 3-D software. The trajectories of the four cardinal points of the sheet led to a warped spatial construct, built in this cardboard. Its wrapped geometry locking its form in space and making it a structurally robust artifact.

Augusto Picon, Bertrand Sauteret
This project proposes a physical representation of the spatial impact of a falling object on a series of receivers. In the absence of the falling object, the physical representation registers the temporal aspect of the event while disclosing new spatial encounters.

Adrian Albert; Sebastien Hefit

1. Physical experiment on gravity: cardboard structure deformed by a stone
2. Rendering of a layered structure derived from physical experiments
3. Physical model, proposed pavilion

This project was selected by the jury at the end of the first semester. In an extensive discussion with the group, the decision was taken to directly work with the water surface of the River Thames.

Nathalie Egli; Auguste Michael; Andres Tovar; Nuez

4. Physical experiment on gravity: a ball falling into water
5. 3-D CAD drawing, section
6. Renderings declaring movement of water
This project and proposal for a pavilion below Millennium Bridge started off with a five sequence of balls impacting on a textile under tension. In the course of the development of the project, the focus shifted from the falling object towards the particular nature of the ground condition.

Che Geoffroy, Minh Luc Pham

1. Physical experiment on gravity: two falling balls impact on textile under tension
2. Sequence drawings recording the balls in space
3–6 3D CAD drawing, urban lounge below Millennium Bridge
OVERFLOW: THE LONDON PAVILION PROJECT

Overflow was originally designed for Tower Bridge Plaza. This site was strategically chosen in order to investigate how a natural force such as the tidal movement occurring in the Thames could be amplified and extended over the land in the form of a spatial screen, continuously transforming the presence of the iconic London skyline and its perception from the plaza. The pavilion was developed as a group project during the second semester of the ALICE studio. 1-5. The development of the final project was accompanied by a large number of study models, structural tests, mock-ups, and testing materials.

Testing a first Styrofoam mock-up moving with the tide in the river Thames at the embankment of Tower Bridge Plaza in London, March 26, 2008.

The final proposal for the ALICE Pavilion for the London Festival of Architecture is a structure measuring 9 by 15 meters, a large-scale architectural artifact that interacts with the tidal movements of the Thames River. Conceived as a flexible post-tensioned polystyrene structure fastened along the embankment parapet as a hinge, it will pivot according to the tidal amplitudes in the Thames River.

Pavilion project group

Rendering of the tidal installation, Tower Bridge Plaza in London.
Twelve students took the challenge of bringing the design into fabrication. This took place at the ECAL+EPFL Lab over a period of two weeks and around the clock. Faced with over 650 different pieces to produce, to assemble flat and then to test under various types of forces, the team first had to find strategies for making the cutting process as efficient as possible. This was achieved by means of angle-cut spread sheets that directed a clear path throughout the entire construction process.

1. Production of the structure at ECAL+EPFL Lab. The demand for space was generously met at ECAL in Rensels.
2. Overflow, 1:1 test assembly on a football field in Rensels near the ECAL+EPFL Lab.
3. Arrival in London; the stacks with the disassembled members are placed at the river walkway on June 18, 2008.
4. On June 20, Overflow was installed at high tide around 4 P.M. The mounting was staged as a public event. About fifty passersby helped to lift Overflow into place and to shift it into its calculated position.
The structure of the installation is based on the idea of a radial grid. The geometry implies constantly changing viewpoints, as well as perspectivity in gradient conditions and in motion, caused by the impact of tidal forces. It is specifically designed for passersby in motion. The porosity of the structure will enhance the awareness of the view filtered from behind, implementing a direct awareness of the urban setting.

1. Overflow at low tide, view towards St. Paul's Cathedral
2a, b. Overflow at low tide
3a, b. Overflow at high tide

The installation was finally mounted in Southwark at the South Bank of the Thames River in front of Tate Modern. The spatial structure of the installation behaves as a tectonic overflow, from water to land. Although the Thames has historically had a substantial impact on the development of the urban fabric of London, a personal and physical connection to the river is restricted today by an imposing embankment. Twice a day, this buffer zone absorbs an almost unnoticeable water level change of over six meters, mainly vertically along its retaining walls.
The proposed installation attempts to first accentuate our awareness of the tidal phenomenon and then transfer it into a physical experience expanding from a vertical to a horizontal spatial configuration over the embankment walkway.